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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Model problem and Introduction

Motivation

▶ Efficiently solve problems on perforated domains.
▶ Numerous holes representing buildings and walls in urban data;
▶ Can be considered a heterogeneous domain with coefficients 0, 1.
▶ Expect corner singularities
▶ Want to avoid global fine-scale solve.

▶ We begin with the linear Poisson equation before moving to
nonlinear problems (Diffusive Wave model).

▶ Applications: flood modelling in urban areas.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Model problem and Introduction

Model PDE: Linear

▶ D: Open simply connected polygonal domain in R2;

▶ (ΩS,k)k : Finite family of perforations in D;

▶ ΩS =
⋃

k ΩS,k and Ω = D \ ΩS .
−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω ∩ ∂ΩS ,

u = 0 on ∂Ω \ ∂ΩS .

With a P1 finite element discretization, this discretely becomes the linear
system

Au = f.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Domain Decomposition Approach

▶ ’Divide and conquer’: Break up problem into subdomains;

▶ Two levels of discretization: ’Coarse’ and ’fine’;

▶ Local subdomain solves can be done in parallel;

▶ Can use overlapping Schwarz methods as iterative solver or as
preconditioner for Krylov;

Idea: Solve model problem on each subdomain locally, with boundary
conditions taken from adjacent subdomains when possible.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Coarse-cell conforming triangulation

Mesh generation process:

▶ Larger N ↣ more basis functions, larger coarse matrix ;

▶ Triangulate after nonoverlapping coarse cell partitioning Ω′
j ;

▶ Overlap subdomains by layers of triangles for RAS.

2×2 subdomains 8×8 subdomains
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Alternating Schwarz Introduction for Lu = f : 2
subdomains

Continuously, the Schwarz iteration is given by

Lun+1
1 = f in Ω1 Lun+1

2 = f in Ω2

un+1
1 = un2 on Γ1 un+1

2 = un+1
1 on Γ2

▶ Γ1 = ∂Ω1 ∩ Ω2, Γ2 = ∂Ω2 ∩ Ω1.

▶ Solve on Ω1, use information from Ω1 as boundary condition for the
solve on Ω2, etc.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Parallel Schwarz Introduction for Lu = f : 2 subdomains

Continuously, the local classical additive Schwarz iteration is given by

Lun+1
1 = f in Ω1 Lun+1

2 = f in Ω2

un+1
1 = un2 on ∂Ω1 ∩ Ω2 un+1

2 = un1 on ∂Ω2 ∩ Ω1

Extending the iteration to multiple subdomains, the algorithm is given by
the following:

Lun+1
j = f in Ωi

un+1
j = uni on ∂Ωj ∩ Ωi

for j = 1, . . . ,N and j such that ∂Ωi ∩ Ωj is non-empty.

▶ At each iteration, use information from adjacent subdomains at
previous iteration → parallel iteration.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Algebraic Form

Algebraically, the global stationary (RAS) iteration becomes

un+1 = un +

 N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj

 (f − Aun)

and the preconditioned system is given by N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj

Au =

 N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj

 f

▶ Rj : Boolean restriction matrices for Ωj ;

▶ Dj : Partition of unity matrices (deal with overlap);

▶ Rj notation allows for global iteration, algebraic definition,
overlapping subdomains.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

1D example- Restriction, partition of unity matrices

Given set of indices N = {0, 1, 2, 3, 4}: partitioned into N1 = {0, 1, 2, 3}
and N2 = {2, 3, 4}, restriction and partition of unity matrices are given as

R1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 R2 =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and

D1 =


1 0 0 0
0 1 0 0
0 0 1

2 0
0 0 0 1

2

 D2 =

 1
2 0 0
0 1

2 0
0 0 1


▶ Satisfies I =

∑2
j=1 R

T
j DjRj .
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Need for coarse correction

▶ Coarse corrections allows for global communication between all
subdomains.

▶ Coarse correction (two-level methods) necessary for scalability for
large number of subdomains.

▶ Generally, without coarse correction: Iterations scale with N.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Numerical Comparison: Without coarse correction

▶ Weak Scalability: fixed subdomain and fine triangulation size, keep
H
h constant.

▶ Shown on homogeneous 2D domain (subdomains in 1 dimension).

▶ Lack of scalability with respect to N.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

(Some) existing overlapping Schwarz coarse spaces

▶ Nicolaides: Piecewise constant by subdomain;

▶ Spectral spaces (eigenvalue problems): DtN, GenEO, SHEM
(spectrally enriched MSFEM);

▶ Energy-minimizing spaces: GDSW, AGDSW, RGDSW;

▶ Multi-scale FEM: MsFEM
▶ Numerically compute harmonic basis functions.
▶ Used to approximate solution on coarse grid, but can use as DD

coarse space!
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Overlapping Schwarz methods

Choice of coarse space

▶ Idea: want to take advantage of a-priori location of perforations
(buildings/walls);

▶ Want robustness with respect to perforation size/location (even
along subdomain interfaces);

▶ Want to choose a coarse space with approximation properties to
improve convergence;

▶ Choose: Local harmonic basis functions occuring at intersection of a
perforation with the coarse skeleton.
▶ Think of as ’enriching’ MsFEM coarse space.
▶ Based on nonoverlapping subdomains.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Construction of Coarse Space

Coarse grid nodes for coarse space basis functions

▶ Nonoverlapping skeleton:
Γ =

⋃
j∈{1,...,N} ∂Ω

′
j ;

▶ (ek)k=1,...,Ne
: Partitioning

of Γ;
▶ each “coarse edge” ek is

an open planar segment;

▶ Set of coarse grid nodes:⋃
k=1,...,Ne

∂ek
▶ (ϕs)s∈{1,...,Nx} : Locally

harmonic basis functions for
each coarse grid node.

▶ # of coarse grid nodes is
automatically generated.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Construction of Coarse Space

Basis functions: boundary conditions

For each coarse grid node xs ,
define gs : Γ → [0, 1] as: for
i = 1, . . .Nx,

gs(xi ) =

{
1, s = i ,

0, s ̸= i ,

▶ gs is linearly extended
on the remainder of Γ.

▶ Can also include
higher-order polynomials
on coarse edges.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Construction of Coarse Space

Basis functions: Harmonic local solutions

For all nonoverlapping
(
Ω′

j

)
j∈{1,...,N} and s = 1, . . . ,Nx, to obtain

ϕs,j = ϕs |Ωj , solve


−∆ϕs,j = 0 in Ω′

j ,

−∂ϕs,j

∂n
= 0 on ∂Ω′

j ∩ ∂ΩS ,

ϕs,j = gs on ∂Ω′
j \ ∂ΩS .

▶ supp(ϕs) = {
⋃

j Ω
′
j | xs is a coarse grid node belonging to ∂Ω′

j}.
▶ Continuously, the coarse space is given by VH = span{ϕs}.
▶ Discretely, columns of coarse matrix RT

0 are the discrete harmonic
basis functions.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Construction of Coarse Space

2-level RAS iteration: N Subdomains

Combine (multiplicitavely) the 1-level RAS iteration

M−1
RAS,1 =

N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj

with the coarse approximation

M−1
0 = RT

0 (R0AR
T
0 )

−1R0.

and solve

un+
1
2 = un +M−1

RAS,1(f − Aun),

un+1 = un+
1
2 +M−1

0 (f − Aun+
1
2 ),

▶ Rj : Correspond to overlapping subdomains.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Construction of Coarse Space

The 2-level preconditioner for Krylov

Combine (additively) the 1-level RAS iteration

M−1
RAS,1 =

N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj

with the coarse approximation

M−1
0 = RT

0 (R0AR
T
0 )

−1R0.

to give
M−1

RAS,2 = M−1
0 +M−1

RAS,1.

and solve
M−1

RAS,2Au = M−1
RAS2f.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Construction of Coarse Space

Approximation properties: Multiscale approximation

Discretely, given
M−1

0 = RT
0 (R0AR

T
0 )

−1R0.

the coarse approximation is the solution of

uH = M−1
0 f.

▶ Can use uH as initial iterate for iteration, Krylov methods.

20 / 41



Multi-Domain Solutions of PDEs Posed on Perforated Domains

Linear Problem: Numerical Results

Linear Numerical Results: Iterative+Krylov, real data set

▶ Compare iterative to Krylov
with various overlap values;

▶ Multiple singularities and no
analytical solution available.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Linear Problem: Numerical Results

Numerical Results: Iterative RAS (Real data)

Iterative Krylov

▶ Fast convergence with Krylov acceleration.

▶ As expected, faster convergence with larger overlap.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Linear Problem: Numerical Results

Experiment 3: Krylov Scalability, large real data set

≈ 300K DOFS in FE triangu-
lation.

▶ Want to show scalability:

▶ “Strong” scalability tests: Keep
model domain and h constant,
vary N.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Linear Problem: Numerical Results

Numerical Results: Krylov (table)

Trefftz
it. dim. (rel)

N min H
20

16 56 22 400 (16.0)
64 56 26 880 (10.9)
256 59 30 1912 (6.6)
1024 61 28 4253 (3.9)

▶ Relative dimension (rel): Compared to would-be homogeneous

domain, dim(R0)

(
√
N+1)2

.

▶ Relative dimension reduces as N increases;

▶ Trefftz-like space produces scalable, accelerated iterations.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Diffusive Wave Model

Nonlinear Problem: Diffusive Wave model

 ∂tu + divF(x , u,∇u) = f in Ω,
F(u) · n = 0 on on ∂Ω ∩ ∂ΩS ,

u = g ∂Ω \ ∂ΩS .

F(x , u,∇u) = h(u, zb(x))
α||∇u||p−2∇u,

▶ zb(x): Bathymetry;

▶ h(u, zb(x)) = max(u − zb(x), 0): Water depth;

▶ κ: Friction coefficient;

▶ α > 1, 1 < p ≤ 2.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Diffusive Wave Model

Forming Realistic Problem

▶ Realistic bathymetry /topography of Nice, France: 5m data;

▶ Rainfall data (source term): Can be taken from previous flood
events (rain gauge data);

▶ Discretization of Problem: FEM/FV Hybrid with upwinding.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Diffusive Wave Model

Discretization

We obtain the nonlinear system

F (Un) =
1

∆t
M(Un − Un−1) + K (Un) = 0, (1)

where M is the (lumped) mass-matrix.

▶ Time derivative is computed via backward-Euler;

▶ K (Un) is discretization of nonlinear term (FEM/FVM);

▶ Perform upwinding on h(u, zb(x))α term (due to degeneracy);

▶ Adaptive time-stepping may be necessary for Newton’s method.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Preconditioning

Nonlinear Preconditioning

Goal: instead of F (U) = 0, solve N(F (U)) = 0.

▶ N(v) = 0 → v = 0;

▶ N(F (v)) straightforward to compute.

Recall from linear problem → fixed point iteration leads to a well-suited
preconditioner.
Idea: From some fixed point iteration

Un+1 = P(Un), (2)

solve F(U) = P(U)− U = 0 via nonlinear solve.

▶ F(U) = 0 is preconditioned nonlinear system.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Preconditioning

Nonlinear RAS iteration

Similarly to the linear problem, use local subdomain solves and glue
together to form fixed-point iteration.

Un+1 =
∑
j

RT
j DjGj(U

n), (3)

where Gj(U
n) is the solution of

RjF (R
T
j Gj(U

n) + (I − RT
j Rj)U

n)) = 0. (4)

▶ Local subproblems are solved via Newton with negligible cost;

▶ Local solves can be done in parallel.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Preconditioning

RASPEN

As mentioned, solve F(U) =
∑

j R
T
j DjGj(U)− U = 0 (RASPEN). via

Newton.

▶ an “improvement” from ASPIN, converges in the overlap;

▶ Inner nonlinear solves allow for computation of exact Jacobian ∇F ,
or specifically the matrix-vector product ∇Fv for some v .
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Preconditioning

RASPEN: Computation of Jacobian

Recall equation for local nonlinear solves:

RjF (R
T
j Gj(U

n) + (I − RT
j Rj)U

n)) = 0.

Taking the derivative of this equation, we obtain

∇Gj(U
n) = Rj − [Rj∇F (Un)RT

j ]−1Rj∇F (Un);

This gives

∇F(Un) = ∇(Un −
∑
j

RT
j Dk∇Gj(U

n))

=
∑
j

RT
j Dj [Rj∇F (Un)RT

j ]−1Rj∇F (Un)

▶ Rj∇F (Un)RT
j , ∇F (Un) can be reused from local nonlinear solves.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Preconditioning

One-level RASPEN

The algorithm, for each time step, is given by: For outer iteration
n = 0, . . . , to convergence,

▶ Solve Ûn =
∑

j R
T
j DjGj(U

n) by gluing local solutions;

▶ Set F(U) = U − Ûn;

▶ Solve Un+1 = Un − [∇F(Un)]−1F(Un) via GMRES, where ∇F(Un)
is assembled as a linear operator.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Preconditioning

Two-level RASPEN

While there are many different ways to choose the coarse correction
(including FAS !cite inspired by Multigrid, we add the coarse correction
multiplicitavely, with a discrete matrix R0.

The algorithm, for each time step, given by: For outer iteration
n = 0, . . . , to convergence,

▶ solve local subproblems RjF (R
T
j Gj(U

n) + (I − RT
j Rj)U

n)) = 0 for
Gj(U

n);

▶ Set Ûn =
∑

j R
T
j DjGj(U

n) by gluing local solutions;

▶ Solve coarse problem R0F (Û
n − RT

0 cno ) = 0 for cn0 ;

▶ Set F(Un) = Un − Ûn + RT
0 cno ;

▶ Solve Un+1 = Un − [∇F(Un)]−1F(Un) via GMRES, where ∇F(Un)
is assembled as a linear operator.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Preconditioning

Coarse Galerkin Approximation

Coarse Galerkin Formulation: solve

R0F (R
T
0 u

n
H) = 0 (5)

for each time step via Newton.

▶ Residual still takes global vector as input, but input vector is sparse;

▶ Much more efficient than global Newton solve (cheaper outer
iterations).
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Problem: Numerical Results

Setup example model problem

▶ Excessive water flow coming from Paillon river in Nice, France;

▶ Dirichlet boundary conditions with initial condition u0 > zb at
leftmost boundary (river).

▶ α = 3
2 , p = 2 (ignoring gradient term), 0 source term.

initial h initial u
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Problem: Numerical Results

Solution at final time (h)

t = 0 t = tf
▶ Effect of zb is visible.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Problem: Numerical Results

Numerical results

▶ Left to right: N=2, 4,8.
▶ Top: cumulative iterations over time. Bottom: convergence history

for first time step.
▶ dt0 = 5 minutes, with increasing/decreasing by

√
2 depending on

convergence.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Problem: Numerical Results

Setup example model problem: Comparison of Coarse
Galerkin and Newton

▶ Excessive water flow coming from the top of the domain with
Dirichlet boundary conditions;

▶ α = 3
2 , p = 2 (ignoring gradient term).

▶ Comparison between Coarse Galerkin and Newton.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Problem: Numerical Results

▶ Left to right: solution h at initial time, solution h at final time, error
between coarse Galerkin and Newton over time.

▶ Runtimes are 370 seconds (coarse Galerkin), 3614 seconds (Newton).

▶ Coarse Galerkin method gives acccurate solution
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Closing Remarks

Closing Remarks

▶ We have presented a novel Trefftz coarse space that can be used to
approximate the fine-scale solution;

▶ The space can also be used in combination with Schwarz methods
to achieve fine-scale accuracy.

▶ For the nonlinear problem, nonlinear preconditioning can be used in
a similar manner to Krylov acceleration (accelerating a fixed-point
iteration);

▶ Performing the coarse Galerkin method is cheap, easy to implement,
and reasonably accurate.
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