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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Model problem and Introduction

Motivation

» Efficiently solve problems on perforated domains.
» Numerous holes representing buildings and walls in urban data;
» Can be considered a heterogeneous domain with coefficients 0, 1.
> Expect corner singularities
> Want to avoid global fine-scale solve.
» We begin with the linear Poisson equation before moving to
nonlinear problems (Diffusive Wave model).

» Applications: flood modelling in urban areas.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains
|—Model problem and Introduction

Model PDE: Linear

» D: Open simply connected polygonal domain in R?;
> (Qs.k),: Finite family of perforations in D;
» Qs =U, Qs .k and Q = D\ Qs.
—Au = f in Q,
% =0 on 00 N0,
u =0 on o0\ 09s.
With a P1 finite element discretization, this discretely becomes the linear

system
Au=f.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Overla pping Schwarz methods

Domain Decomposition Approach

'Divide and conquer’: Break up problem into subdomains;
Two levels of discretization: 'Coarse’ and 'fine’;

Local subdomain solves can be done in parallel;

vvyyVvyy

Can use overlapping Schwarz methods as iterative solver or as
preconditioner for Krylov;

Idea: Solve model problem on each subdomain locally, with boundary
conditions taken from adjacent subdomains when possible.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains
|—Overlapping Schwarz methods

Coarse-cell conforming triangulation

Mesh generation process:
» Larger N — more basis functions, larger coarse matrix ;
» Triangulate after nonoverlapping coarse cell partitioning Q;

» Overlap subdomains by layers of triangles for RAS.

2x2 subdomains 8x8 subdomains
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Overla pping Schwarz methods

Alternating Schwarz Introduction for Lu = f: 2
subdomains

Continuously, the Schwarz iteration is given by

Lul™t =f in Luytt =f in
uft™t = uf on I ugtt =yt on Iy
Q T, >r1 Q
\
o0

> [ =001 N, [ =00 NQ;.

» Solve on g, use information from 3 as boundary condition for the
solve on €2y, etc.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Overla pping Schwarz methods

Parallel Schwarz Introduction for Lu = f: 2 subdomains

Continuously, the local classical additive Schwarz iteration is given by

Luptt =f in Luygtt =f in

ufH =uj on 91N u5+1 =uf on 0N

Extending the iteration to multiple subdomains, the algorithm is given by
the following:

[ﬁuj’-’+1 =f in €

LIJ'-H_:l = U;’ on 891 N Q,’
for j=1,..., N and j such that 9Q; N €); is non-empty.
» At each iteration, use information from adjacent subdomains at
previous iteration — parallel iteration.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Overla pping Schwarz methods

Algebraic Form

Algebraically, the global stationary (RAS) iteration becomes

N
u™ =u"+ [ Y R/D;(R;AR])'R; | (f - Au")
j=1

and the preconditioned system is given by

N N
> R/D;(R/AR])'R; | Au= | > R/D;(R,AR])'R; | f
Jj=1 j=1

> R; : Boolean restriction matrices for €;;
» D, : Partition of unity matrices (deal with overlap);

> R; notation allows for global iteration, algebraic definition,
overlapping subdomains.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains
|—Overlapping Schwarz methods

1D example- Restriction, partition of unity matrices

Given set of indices V' = {0,1,2,3,4}: partitioned into N7 = {0,1,2,3}
and N, = {2,3, 4}, restriction and partition of unity matrices are given as

c oo 00100
R, = R,=1{0 0 0 1 0
00100 000 0 1
00010
and
1 0 0 0 1
100
2
01:01?0 D,=(0 % 0
00 40 0§ 1
0 0 0 3

> Satisfies | = Y7, R7TD;R;.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Overla pping Schwarz methods

Need for coarse correction

» Coarse corrections allows for global communication between all
subdomains.

» Coarse correction (two-level methods) necessary for scalability for
large number of subdomains.

» Generally, without coarse correction: Iterations scale with N.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains
|—Overlapping Schwarz methods

Numerical Comparison: Without coarse correction

» Weak Scalability: fixed subdomain and fine triangulation size, keep
% constant.
» Shown on homogeneous 2D domain (subdomains in 1 dimension).

100 — N=4
— N=s
1072 — N=16
— N=32
10-4 — N=64
10°°
1078
10710
ol |
|
10714 -
0 20 ) 60 80 100
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Overla pping Schwarz methods

(Some) existing overlapping Schwarz coarse spaces

» Nicolaides: Piecewise constant by subdomain;

» Spectral spaces (eigenvalue problems): DtN, GenEO, SHEM
(spectrally enriched MSFEM);

» Energy-minimizing spaces: GDSW, AGDSW, RGDSW;

» Multi-scale FEM: MsFEM

» Numerically compute harmonic basis functions.
> Used to approximate solution on coarse grid, but can use as DD
coarse space!
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Overla pping Schwarz methods

Choice of coarse space

» Idea: want to take advantage of a-priori location of perforations
(buildings/walls);

» Want robustness with respect to perforation size/location (even
along subdomain interfaces);

» Want to choose a coarse space with approximation properties to
improve convergence;

» Choose: Local harmonic basis functions occuring at intersection of a
perforation with the coarse skeleton.

» Think of as 'enriching’ MsFEM coarse space.
» Based on nonoverlapping subdomains.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Constructic'n of Coarse Space

Coarse grid nodes for coarse space basis functions

» Nonoverlapping skeleton:
M= Ujeq....ny 9

> ()1, Partitioning
of I';

> each ‘“coarse edge” e is J
an open planar segment; '[

» Set of coarse grid nodes: -
Uk:l,.wNe Oex

> (¢5)s€{17...,NX} . Locally
harmonic basis functions for

each coarse grid node.

» # of coarse grid nodes is
automatically generated.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains
|—Construction of Coarse Space

Basis functions: boundary conditions

For each coarse grid node xs,
define gs : ' — [0,1] as: for
i=1,... Ny,

1, s=1,
gS(X’)_{o, s,

» g is linearly extended
on the remainder of I

» Can also include
higher-order polynomials
on coarse edges.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Construction of Coarse Space

Basis functions: Harmonic local solutions

For all nonoverlapping (QJ’)

¢sj = bs|q;, solve

JE{L, N}

_Ad)s,j = 0 in Q/-
"9 _ g o o, N 60,
on J
¢sj = gs on (’)QJ’. \ 09Qs.

> supp(¢s) = {U; 2} | xs is a coarse grid node belonging to €2 }.

» Continuously, the coarse space is given by Vi = span{¢s}.

> Discretely, columns of coarse matrix R/ are the discrete harmonic
basis functions.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Construc':ion of Coarse Space

2-level RAS iteration: N Subdomains

Combine (multiplicitavely) the 1-level RAS iteration
N
Mgas, = Y R/D;(R;AR])'R;
j=1
with the coarse approximation
M;* = R{ (RoAR] ) 'Ry.
and solve
™tz ="+ Mﬁjs,l(f — Au"),

un—}—l _ un+% + M(;l(f _ Aun+%)7

» R; : Correspond to overlapping subdomains.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Construc':ion of Coarse Space

The 2-level preconditioner for Krylov

Combine (additively) the 1-level RAS iteration

N
Mgas: = > R/D;(R;AR])'R;
j=1

with the coarse approximation
My ' = Rg (RoAR] ) *Ry.

to give
1 g1 —1
Mgaso» =My~ + Mgas ;-

and solve
-1 _ -1
MRASQAU = Mgasof.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Construction of Coarse Space

Approximation properties: Multiscale approximation

Discretely, given
My = R{ (RoAR] ) 'Ry.

the coarse approximation is the solution of

uy = Mglf.

» Can use uy as initial iterate for iteration, Krylov methods.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Linear Problem: Numerical Results

Linear Numerical Results: Iterative+Krylov, real data set

» Compare iterative to Krylov
with various overlap values;

» Multiple singularities and no
analytical solution available.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Lineav Problem: Numerical Results

Numerical Results: Iterative RAS (Real data)

— overlap= 0.0 10° — overlap= 0.0
overlap= 0.05 overlap= 0.05
— overlap=0.2 — overlap=02

Iterative Krylov

» Fast convergence with Krylov acceleration.

> As expected, faster convergence with larger overlap.

22/41



Multi-Domain Solutions of PDEs Posed on Perforated Domains

Linear Problem: Numerical Results

Experiment 3: Krylov Scalability, large real data set

» Want to show scalability:

» “Strong” scalability tests: Keep
model domain and h constant,
vary N.

~ 300K DOFS in FE triangu-
lation.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Lineav Problem: Numerical Results

Numerical Results: Krylov (table)

Trefftz
it. dim. (rel)
N min %
16 56 22400 (16.0)
64 56 26 |880 (10.9)
256 59 301912 (6.6)
9)

1024 61 284253 (3.

> Relative dimension (rel): Compared to would-be homogeneous
dim(ry)
(VN+1)2°

» Relative dimension reduces as N increases;

domain,

» Trefftz-like space produces scalable, accelerated iterations.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains
|—Nc:nlinear Diffusive Wave Model

Nonlinear Problem: Diffusive Wave model

Oru +divF(x,u,Vu) = f in Q,
(u)n =0 on on 02N 0Qs,
u = g 00\ 09Qs.

F(x,u,Vu) = h(u,zb(x))o‘HVu||”72Vu7

> zp(x): Bathymetry;

> h(u,zp(x)) = max(u — zp(x),0): Water depth;
» x: Friction coefficient;

> a>11<p<2
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Diffusive Wave Model

Forming Realistic Problem

» Realistic bathymetry /topography of Nice, France: 5m data;

» Rainfall data (source term): Can be taken from previous flood
events (rain gauge data);

» Discretization of Problem: FEM/FV Hybrid with upwinding.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains
|—chnlinear Diffusive Wave Model

Discretization

We obtain the nonlinear system
1
F(U") = ;M(U" = U + K(U") =0, (1)
where M is the (lumped) mass-matrix.
» Time derivative is computed via backward-Euler;
» K(U") is discretization of nonlinear term (FEM/FVM);
» Perform upwinding on h(u, z5(x))* term (due to degeneracy);

» Adaptive time-stepping may be necessary for Newton’s method.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Nc:nlinear Preconditioning

Nonlinear Preconditioning

Goal: instead of F(U) =0, solve N(F(U)) = 0.
> N(v)=0—v=0;
» N(F(v)) straightforward to compute.

Recall from linear problem — fixed point iteration leads to a well-suited
preconditioner.
Idea: From some fixed point iteration

U = P(U?), 2)

solve F(U) = P(U) — U = 0 via nonlinear solve.

» F(U) =0 is preconditioned nonlinear system.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Nc:nlinear Preconditioning

Nonlinear RAS iteration

Similarly to the linear problem, use local subdomain solves and glue
together to form fixed-point iteration.

yntt = Z R’ D;G;(U"), (3)
j
where G;(U") is the solution of
RF(RT G(U) + (1 — RTR)U™)) = 0. (4)

» Local subproblems are solved via Newton with negligible cost;

» Local solves can be done in parallel.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Nc:nlinear Preconditioning

RASPEN

As mentioned, solve F(U) =3_; RJ-TDJ-GJ-(U) — U =0 (RASPEN). via
Newton.

» an “improvement” from ASPIN, converges in the overlap;

» Inner nonlinear solves allow for computation of exact Jacobian V.F,
or specifically the matrix-vector product V.Fv for some v.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—chnlinear Preconditioning

RASPEN: Computation of Jacobian

Recall equation for local nonlinear solves:
RiF(RTG;(U") + (I = RT R))U")) = 0.
Taking the derivative of this equation, we obtain
VG(U") = R = [RVF(U"R/T'RVF(U");
This gives

VF(U") = V(U" =Y RI DV G(UM)
= > RIDIRVFU"RTI T RVF(U")

J

> RJ-VF(U”)RJ-T, VF(U") can be reused from local nonlinear solves.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Nc:nlinear Preconditioning

One-level RASPEN

The algorithm, for each time step, is given by: For outer iteration
n=20,..., to convergence,

> Solve U" = > RJ-TDJ-GJ-(U”) by gluing local solutions;

> Set F(U)=U— U";

> Solve Ul = U" — [VF(U")]"LF(U") via GMRES, where VF(U")
is assembled as a linear operator.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—chnlinear Preconditioning

Two-level RASPEN

While there are many different ways to choose the coarse correction
(including FAS Icite inspired by Multigrid, we add the coarse correction
multiplicitavely, with a discrete matrix Rp.

The algorithm, for each time step, given by: For outer iteration

n=20,..., to convergence,
> solve local subproblems R;F(R[ G;(U") + (I — R R;)U")) = 0 for
G;(U");

> Set Un = ZJ. RJ.TDJ-GJ-(U") by gluing local solutions;
> Solve coarse problem RyF(U" — R{ ¢7) = 0 for cZ;
> Set F(U") = U" — U+ R] c”;

» Solve Ul = U — [VF(UM)] LF(U") via GMRES, where VF(U")
is assembled as a linear operator.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Nc:nlinear Preconditioning

Coarse Galerkin Approximation

Coarse Galerkin Formulation: solve
RoF(RJ uf)) =0 (5)

for each time step via Newton.
» Residual still takes global vector as input, but input vector is sparse;

» Much more efficient than global Newton solve (cheaper outer
iterations).
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Problem: Numerical Results

Setup example model problem

» Excessive water flow coming from Paillon river in Nice, France;

» Dirichlet boundary conditions with initial condition uy > z;, at
leftmost boundary (river).

> o =3, p =2 (ignoring gradient term), 0 source term.

initial h initial u
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

Nonlinear Problem: Numerical Results

Solution at final time (h)

» Effect of z, is visible.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

|—Nenlinear Problem: Numerical Results

Numerical results

> Left to right: N=2, 4,8.

» Top: cumulative iterations over time. Bottom: convergence history
for first time step.

> dty = 5 minutes, with increasing/decreasing by /2 depending on

convergence.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

I—Nonlinear Problem: Numerical Results

Setup example model problem: Comparison of Coarse
Galerkin and Newton

» Excessive water flow coming from the top of the domain with
Dirichlet boundary conditions;

> o =3, p=2 (ignoring gradient term).

» Comparison between Coarse Galerkin and Newton.
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Multi-Domain Solutions of PDEs Posed on Perforated Domains

I—Nonlinear Problem: Numerical Results

5 o0 000 00 400 3000 6000
000400 Time ls)

» Left to right: solution h at initial time, solution h at final time, error
between coarse Galerkin and Newton over time.

> Runtimes are 370 seconds (coarse Galerkin), 3614 seconds (Newton).

» Coarse Galerkin method gives acccurate solution
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|—Closing Remarks

Closing Remarks

> We have presented a novel Trefftz coarse space that can be used to
approximate the fine-scale solution;
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|—Clcsing Remarks

Closing Remarks

> We have presented a novel Trefftz coarse space that can be used to
approximate the fine-scale solution;

» The space can also be used in combination with Schwarz methods
to achieve fine-scale accuracy.
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|—Clcsing Remarks

Closing Remarks

> We have presented a novel Trefftz coarse space that can be used to
approximate the fine-scale solution;

» The space can also be used in combination with Schwarz methods
to achieve fine-scale accuracy.

» For the nonlinear problem, nonlinear preconditioning can be used in
a similar manner to Krylov acceleration (accelerating a fixed-point
iteration);
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|—Clcsing Remarks

Closing Remarks

> We have presented a novel Trefftz coarse space that can be used to
approximate the fine-scale solution;

» The space can also be used in combination with Schwarz methods
to achieve fine-scale accuracy.

» For the nonlinear problem, nonlinear preconditioning can be used in
a similar manner to Krylov acceleration (accelerating a fixed-point
iteration);

» Performing the coarse Galerkin method is cheap, easy to implement,
and reasonably accurate.
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|—Clcsing Remarks
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